Electrically excited synchronous machines have become an attractive solution to electric vehicles. Equipped with a field winding in the rotor, the excitation of the machine is controllable. However, due to the magnetic mutual coupling between the stator and rotor windings, a voltage will be induced in the field winding in case of a current rise in the stator winding and vice versa. In this study, a dynamic current control algorithm with compensation for magnetic mutual coupling is proposed. A first-order response of current rise is expected. To achieve this, the controller consists of three parts. The first part is the feed forward of cross-coupling terms due to Park transform. The second part takes care of the resistances and selfinductances. The third part takes care of the mutual inductances. Finally, the outputs from the three parts are summed up to be the total output from the controller.