Among transition metal oxides, VO 2 is a particularly interesting and challenging correlated electron material where an insulator to metal transition (MIT) occurs near room temperature. Here we investigate a 16 nm thick strained vanadium dioxide film, trying to clarify the dynamic behavior of the insulator/metal transition. We measured (resonant) photoemission below and above the MIT transition temperature, focusing on heating and cooling effects at the vanadium L 23 -edge using X-ray Absorption Near-Edge Structure (XANES). The vanadium L 23 -edges probe the transitions from the 2p core level to final unoccupied states with 3d orbital symmetry above the Fermi level. The dynamics of the 3d unoccupied states both at the L 3 -and at the L 2 -edge are in agreement with the hysteretic behavior of this thin film. In the first stage of the cooling, the 3d unoccupied states do not change while the transition in the insulating phase appears below 60 • C. Finally, Resonant Photoemission Spectra (ResPES) point out a shift of the Fermi level of~0.75 eV, which can be correlated to the dynamics of the 3d // orbitals, the electron-electron correlation, and the stability of the metallic state.