Surface‐plasmon‐polariton waves are two‐dimensional electromagnetic surface waves that propagate at the interface between a metal and a dielectric. These waves exhibit unusual and attractive properties, such as high spatial confinement and enhancement of the optical field, and are widely used in a variety of applications, such as sensing and subwavelength optics. The ability to precisely control the spatial and spectral properties of the surface‐plasmon wave is required in order to support the growing interest in both research and applications of plasmonic waves, and to bring it to the next level. Here, we review the challenges and methods for shaping the wavefront and spectrum of plasmonic waves. In particular, we present the recent advances in plasmonic spatial and spectral shaping, which are based on the realization of plasmonic holograms for the optical nearfield.