2020
DOI: 10.1016/j.simpat.2019.102019
|View full text |Cite
|
Sign up to set email alerts
|

Dynamic decision support for resource offloading in heterogeneous Internet of Things environments

Abstract: Computation offloading is one of the primary technological enablers of the Internet of Things (IoT), as it helps address individual devices' resource restrictions. In the past, offloading would always utilise remote cloud infrastructures, but the increasing size of IoT data traffic and the real-time response requirements of modern and future IoT applications have led to the adoption of the edge computing paradigm, where the data is processed at the edge of the network.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
18
0
2

Year Published

2021
2021
2023
2023

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 30 publications
(20 citation statements)
references
References 34 publications
0
18
0
2
Order By: Relevance
“…In all cases, group A showed longer processing times because the requested tasks were allocated to the first server with free resources or the smallest free-resource capacity. It makes for a long queuing time at the edge server [54]. Worst fit and FuB algorithms have approximately the same performance results when the system load is low.…”
Section: A Comparison Of Fuzzy-based Meo Using Differentmentioning
confidence: 91%
See 2 more Smart Citations
“…In all cases, group A showed longer processing times because the requested tasks were allocated to the first server with free resources or the smallest free-resource capacity. It makes for a long queuing time at the edge server [54]. Worst fit and FuB algorithms have approximately the same performance results when the system load is low.…”
Section: A Comparison Of Fuzzy-based Meo Using Differentmentioning
confidence: 91%
“…According to the standard practice in computing offloading modeling [5,[54][55][56], the time it takes to transmit the requested task of an application from local edge server j connecting to mobile user i to neighboring edge server k depends on the size of the input data that the task is associated with, b ij , which is given as…”
Section: Transmission Delay At the Edge Serversmentioning
confidence: 99%
See 1 more Smart Citation
“…The default value of the threshold is set to C th = 0.75, i.e., the decisions with C < C th are reevaluated. We adopt here a standard, confidence-score based decision that is simple but effective; for more advanced mechanisms on how to offload decisions from the edge, see, e.g., [47]. The threshold C th is a tunable parameter that allows to trade-off confidence in the decision about anomaly and response time.…”
Section: ) Anomaly Detection Based On Autoencodersmentioning
confidence: 99%
“…Dentro de las arquitecturas de la IoT destaca la computación en la nube (Cloud Computing) [7], la cual ofrece la posibilidad de acceder a una amplia variedad de servicios a través de Internet, con la ventaja de que los datos provistos por dispositivos y usuarios sean accedidos desde cualquier lugar y estar disponibles sin requerir de una instalación de software previa en un dispositivo, reduciendo los costos que esto conlleva. Una de las principales falencias encontradas en el estado del arte es la falta de distinción entre las arquitecturas IoT en el borde y en la niebla, siendo términos que los propios autores deciden intercambiar y asumir como iguales [8,9,10]. La computación en el borde (Edge Computing) y la computación en la niebla (Fog Computing) son arquitecturas que extienden la arquitectura del Cloud Computing.…”
Section: Introductionunclassified