A small angle X-ray scattering (SAXS) study of nanovoids in 99. 988 and 99.995 at.% aluminium is presented. Absolute intensity calibration using a glassy carbon standard is used to extract the weak SAXS signature from nanovoids introduced by thermal quenching. SAXS analysis methods, including Guinier, Porod and Indirect Transform, are used to obtain values for the void-size, number distribution and volume fraction, as well as measures of the void-metal matrix interface structure in quenched aluminium samples. The SAXS analysis has identified a residual impurity effect on void formation and has been used to characterize trends in nanovoid size, number distribution and interface structure as a function of ageing time at elevated temperatures (artificial ageing). The work presented here, including identification of experimental tools that can be readily improved, demonstrates that SAXS studies are capable of providing precise characterization of nanovoid structure in aluminium. This level of information will be useful in developing phenomenological models of void nucleation and growth capable of linking atomic scale phenomena to macroscopic material properties.