2021
DOI: 10.48550/arxiv.2111.01019
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Dynamic Distances in Hyperbolic Graphs

Abstract: We consider the following dynamic problem: given a fixed (small) template graph with colored vertices C and a large graph with colored vertices G (whose colors can be changed dynamically), how many mappings m are there from the vertices of C to vertices of G in such a way that the colors agree, and the distances between m(v) and m(w) have given values for every edge? We show that this problem can be solved efficiently on triangulations of the hyperbolic plane, as well as other Gromov hyperbolic graphs. For var… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 14 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?