Long-runout landslides are well-known and notorious geologic hazards in many mountainous parts of the world. Commonly encompassing enormous volumes of debris, these rapid mass movements place populations at risk through both direct impacts and indirect hazards, such as downstream flooding. Despite their evident risks, the mechanics of these large-scale landslides remain both enigmatic and controversial. In this work, we illuminate the inner workings of one exceptionally well-exposed and well-preserved long-runout landslide of late Pleistocene age located in Eureka Valley, east-central California, Death Valley National Park. The landslide originated in the detachment of more than 5 million m3 of Cambrian bedrock from a rugged northwest-facing outcrop in the northern Last Chance Range. Its relatively compact scale, well-preserved morphology, varied lithologic composition, and strategic dissection by erosional processes render it an exceptional laboratory for the study of the long-runout phenomenon in a dry environment. The landslide in Eureka Valley resembles, in miniature, morphologically similar “Blackhawk-like” landslides on Earth, Mars, and minor planet Ceres, including the well-known but much larger Blackhawk landslide of southern California. Like these other landslides, the landslide in Eureka Valley consists of a lobate, distally raised main lobe bounded by raised lateral levees. Like other terrestrial examples, it is principally composed of pervasively fractured, clast-supported breccia. Based on the geologic characteristics of the landslide and its inferred kinematics, a two-part emplacement mechanism is advanced: (1) a clast-breakage mechanism (cataclasis) active in the bedrock canyon areas and (2) sliding on a substrate of saturated sediments encountered and liquefied by the main lobe of the landslide as it exited the main source canyon. Mechanisms previously hypothesized to explain the high-speed runout and morphology of the landslide and its Blackhawk-like analogs are demonstrably inconsistent with the geology, geomorphology, and mineralogy of the subject deposit and its depositional environment.