2024
DOI: 10.1177/09544054241272855
|View full text |Cite
|
Sign up to set email alerts
|

Dynamic flexible job shop scheduling based on deep reinforcement learning

Dan Yang,
Xiantao Shu,
Zhen Yu
et al.

Abstract: The unpredictable dynamic events in smart factory seriously influence the scheduling schemes and production efficiency. To minimize the total tardiness of orders, this paper proposes a Deep Reinforcement Learning (DRL) method to solve the Dynamic Flexible Job Shop Scheduling Problem (DFJSP) with random job arrival. In the scheduling process, the intelligent agent can select the operations to be processed on the available machines according to the job shop state at each scheduling point by transforming DFJSP in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 32 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?