Dynamic flexible job shop scheduling based on deep reinforcement learning
Dan Yang,
Xiantao Shu,
Zhen Yu
et al.
Abstract:The unpredictable dynamic events in smart factory seriously influence the scheduling schemes and production efficiency. To minimize the total tardiness of orders, this paper proposes a Deep Reinforcement Learning (DRL) method to solve the Dynamic Flexible Job Shop Scheduling Problem (DFJSP) with random job arrival. In the scheduling process, the intelligent agent can select the operations to be processed on the available machines according to the job shop state at each scheduling point by transforming DFJSP in… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.