Functional connectivity (FC) is known to be individually unique and to reflect cognitive variability. Although FC can serve as a valuable correlate and potential predictor of (patho-) physiological nervous function in high-risk constellations, such as preterm birth, templates for individualized FC analysis are lacking, and knowledge about the capacity of the premature brain to develop FC variability is limited. In a cohort of prospectively recruited, preterm-born infants undergoing magnetic resonance imaging close to term-equivalent age, we show that the overall pattern could be reliably detected with a broad range of interindividual FC variability in regions of higher-order cognitive functions (e.g., association cortices) and less interindividual variability in unimodal regions (e.g., visual and motor cortices). However, when comparing the preterm and adult brains, some brain regions showed a marked shift in variability toward adulthood. This shift toward greater variability was strongest in cognitive networks like the attention and frontoparietal networks and could be partially predicted by developmental cortical expansion. Furthermore, FC variability was reflected by brain tissue characteristics indicating cortical maturation. Brain regions with high functional variability (e.g., the inferior frontal gyrus and temporoparietal junction) displayed lower cortical maturation at birth compared with somatosensory cortices. In conclusion, the overall pattern of interindividual variability in FC is already present preterm; however, some brain regions show increased variability toward adulthood, identifying characteristic patterns, such as in cognitive networks. These changes are related to postnatal cortical expansion and maturation, allowing for environmental and developmental factors to translate into marked individual differences in FC.