Dynamic compressive behavior of dry quartz sand (Quikrete #1961 sand quarried in Pensacola, FL) under confinement was characterized using a modified long split Hopkinson pressure bar (SHPB). Sand grains were confined inside a hollow cylinder of hardened steel and capped by cemented tungsten carbide cylindrical rods. This assembly was subjected to repeated shaking to consolidate sand to attain precise bulk mass densities. It is then sandwiched between incident and transmission bars on SHPB for dynamic compression measurements. Sand specimens of five initial mass densities, namely, 1.51, 1.57, 1.63, 1.69, and 1.75 g/cm 3 , were characterized at high strain rates near 600 s −1 , to determine the volumetric and deviatoric behaviors through measurements of both axial and transverse responses of a cylindrical sand sample under confinement. The stress-strain relationship was found to follow a power law relationship with the sand initial bulk density, with an exponent of 8.25, indicating a behavior highly sensitive to mass density. The energy absorption density and compressibility of sand were determined as a function of axial stress.