A flow redirection and single cell immobilization method in a microfluidic chip is presented. Microheaters generated localized heating and induced poly(N-isopropylacrylamide) phase transition, creating a hydrogel that blocked a channel or immobilized a single cell. The heaters were activated in sets to redirect flow and exchange the fluid in which an immobilized cell was immersed. A yeast cell was immobilized in hydrogel and a 4',6-diamidino-2-phenylindole (DAPI) fluorescent stain was introduced using flow redirection. DAPI diffused through the hydrogel and fluorescently labelled the yeast DNA, demonstrating in situ single cell biochemistry by means of immobilization and fluid exchange.