Base-free 3-methyl-1-boraadamantane was synthesized by starting from its known THF adduct, transforming it to a butylate-complex with n-butyllithium, cleaving the cage with acetyl chloride to give 3-n-butyl-5-methyl-7-methylene-3-borabicyclo[3.3.1]nonane and closing the cage again by reacting the latter with dicyclohexylborane. The identity of 3-methyl-1-boraadamantane was proven by (1) H, (11) B and (13) C NMR spectroscopy and elemental analysis. The experimental equilibrium structure of the free 3-methyl-1-boraadamantane molecules has been determined at 100 °C by using gas-phase electron diffraction. For this structure determination, an improved method for data analysis has been introduced and tested: the structural refinement versus gas-phase electron diffraction data (in terms of Cartesian coordinates) with a set of quantum-chemically derived regularization constraints for the complete structure under optimization of a regularization constant, which maximizes the contribution of experimental data while retaining a stable refinement. The detailed analysis of parameter errors shows that the new approach allows obtaining more reliable results. The most important structural parameters are: r(e) (B-C)(av) =1.556(5) Å, angle(e) (C-B-C)(av) =116.5(2)°. The configuration of the boron atom is pyramidal with ∑ angle (C-B-C)=349.4(4)°. The nature of bonding was analyzed further by applying the natural bond orbital (NBO) and atoms in molecules (AIM) approaches. The experimentally observed shortening of the B-C bonds and elongation of the adjacent C-C bonds can be explained by the σ(C-C)→p(B) hyperconjugation model. Both NBO and AIM analyses predict that the B-C bonds are significantly bent in the direction out of the cage.