The main problem dealt with in this paper is the creation of a protocol for improved QoS-aware mobility management support in cellular all-IP networks, whereby we propose a new algorithm for QoS-aware mobility management, based on multidimensional QoS metrics. An analytical framework for performance evaluation was presented as well. The proposed algorithm for QoS-aware dynamic MAP selection relies on multidimensional QoS metrics, defined in QoS-preference spaces of the mobile node and QoS-ability spaces of MAP candidates, in the decision-making process. The metric is chosen to achieve the desired QoS level through three parameters: bandwidth, delay, and reliability, while retaining the balance of MAP's loads in the entire network. For purposes of performance evaluation of the proposed model, we used: algorithm convergence, traffic class distribution by MAP's, and handover delay. Results showed that the standard deviation for each component of the QoS-ability vector is two orders of magnitude smaller than the deviation in the static MAP selection scenario. We achieved a total handover delay decrease from 20 ms to several hundred milliseconds, by simplifying DAD procedures preserving the simplicity of architecture.INDEX TERMS Handover delay, hierarchical mobile IPv6 (HMIPv6), MAP selection, mobility anchor point.