Material Point Method (MPM) mesoscale simulation was used to study the constitutive relation of a polymer bonded explosive (PBX) consisting of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) and a fluorine polymer binder F2314. The stress-strain variations of the PBX were calculated for different temperatures and different porosities, and the results were found to be consistent with experimental observations. The stress-strain relations at different temperatures were used to develop the constitutive equation of the PBX by using numerical data fitting. Stress-strain data for different porosities were used to establish the constitutive equation by fitting the simulation data to an improved Hashion-Shtrikman model. The equation can be used to predict the shear modulus and bulk modulus of the PBX at different densities of the sample. The constitutive equations developed for TATB/F2314 PBX by MPM mesoscale simulation are important equations for the numerical simulations of the PBX at macroscale. The method presented in this study provides an alternative approach for studying the constitutive relations of PBX.