Unmanned aerial vehicles (UAV) are widely used as remote sensing platforms to effectively monitor agricultural conditions. The wind field generated by the rotors in low-altitude operations will cause the deformation of rice crops, and may affect the acquisition of the true spectral information. In this study, a low-altitude UAV remote sensing simulation platform and a triple-direction wind field wireless sensor network system were built to explore the wind field distribution law. Combined with the multi-spectral images of the rice canopy, the influence of wind field on the spectral information acquisition was analyzed through variance and regression analysis. The results showed that the Z-direction wind field of UAV rotors dominated along three directions (X, Y, and Z). The coefficient of determination (R2) of three linear regression models for Normalized Difference Vegetation Index (NDVI), Ratio Vegetation Index (RVI), and Canopy Coverage Rate (CCR) was 0.782, 0.749, and 0.527, respectively. Therefore, the multi-rotor UAV wind field had an impact on the spectral information acquisition of rice canopy, and this influence could eventually affect the assessment of rice growth status. The models established in this study could provide a reference for the revised model of spectral indices, and offer guidance for the actual operations of low-altitude multi-rotor UAV.