PurposeAvailability of military systems is of major concern for military planners at both tactical (battle) level and at strategic level (long‐term national planning). Availability factors critically affect the operational effectiveness during military operations. Military systems are complex and lend themselves to simulation approach for availability estimation as analytical solutions are extremely difficult. The purpose of this paper is to discuss the method of systems modeling to approach the simulation for availability estimation of military systems.Design/methodology/approachAvailability measures are needed for two main domains of application: peacetime operations and battlefield situations. Availability measures include not only inherent availability of interest to designers/manufacturers, but also operational availability and field/service availability. The simulation approach adopted here involves discrete event simulation (DES) techniques using Monte Carlo methods since a network of events can be included in the model. A system engineering approach is emphasized, starting with system representation and characterisation, and using system aggregation techniques.FindingsModeling involves hierarchical models and network diagrams for events. First the system is described by a hierarchical model; the events and transitions are represented with state transition diagrams (STD). The simulation scheme would be based on initial resources or inventory as military operations proceed, with random variates for event times or rates. The availability as a function of time A(t) is arrived at. The reliability and maintainability models are simulated with probability distributions or using empirical distributions. The methods of data collection and analysis, and sensitivity analysis are mentioned. The methodology is explained with two case studies from the authors' work. The approaches of other workers in recent years are summarised.Originality/valueThe paper shows that the simulation models can suitably be modified to include their applications for army and navy military operations. Also, with proper data on all major subsystems of interest for the weapon platform and accurate past war data, it is possible to fine‐tune the models for online use during military campaigns. The availability figures thus obtained may also be used for procurement decisions for long‐term and strategic planning.