The speed error of actuators during the flight of a quad-rotor is included in the attitude error, and this error is immediately corrected by the pilot’s observation. As the control authority of the quad-rotor changes to a computer system, the correction of the error is calculated and performed by the attitude sensor and the mathematical model of the quad-rotor. However, there is a response error to the control signal despite driving the same motor, which causes different results from the model prediction and affects the stability of the flight. Therefore, the response characteristics of hardware represented by the same mathematical model but having errors should be reflected in the modeling of the quad-rotor. In this paper, the response error of the actuators assembled with the same propellers and motors is verified through experiments. The actuators model that reflects this error is presented, and the thrust coefficient range by the propellers is also presented. Additionally, the speed error of actuators due to the voltage drop of the battery was verified through experiments, and a method for applying this error to the actuator model is presented.