Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Nuclear power is typically deployed as a baseload generator. Increased penetration of variable renewables motivates combining nuclear and renewable technologies into Integrated Energy Systems (IES) to improve dispatchability, component synergies and, through cogeneration, address multiple markets. However, combining multiple energy resources heavily depends on the proper selection of each system’s location and design limitations. In this paper, co-siting options for IES that couple nuclear and concentrating solar power (CSP) with thermal desalination are investigated. A comprehensive siting analysis is performed that utilizes global information survey data to determine possible co-siting options for nuclear and solar thermal generation in the United States. Viable co-siting options are distributed across the Southwestern U.S., with the greatest concentration of siting options in the southern Great Plains, although siting with higher solar direct normal irradiance is possible in other states such as Arizona and New Mexico. Brackish water desalination is also attractive across the southwest U.S. due to high water stress, but for brackish water desalination reverse osmosis (an electricity driven process) is most cost- and energy-efficient, which does not require co-siting with the thermal generator. The most attractive state for nuclear and thermal desalination (which is more attractive when using seawater) is Texas, although other areas may become attractive as water stress increases over the coming decades. Co-siting of all CSP and thermal desalination is challenging as attractive CSP sites are not coastal.
Nuclear power is typically deployed as a baseload generator. Increased penetration of variable renewables motivates combining nuclear and renewable technologies into Integrated Energy Systems (IES) to improve dispatchability, component synergies and, through cogeneration, address multiple markets. However, combining multiple energy resources heavily depends on the proper selection of each system’s location and design limitations. In this paper, co-siting options for IES that couple nuclear and concentrating solar power (CSP) with thermal desalination are investigated. A comprehensive siting analysis is performed that utilizes global information survey data to determine possible co-siting options for nuclear and solar thermal generation in the United States. Viable co-siting options are distributed across the Southwestern U.S., with the greatest concentration of siting options in the southern Great Plains, although siting with higher solar direct normal irradiance is possible in other states such as Arizona and New Mexico. Brackish water desalination is also attractive across the southwest U.S. due to high water stress, but for brackish water desalination reverse osmosis (an electricity driven process) is most cost- and energy-efficient, which does not require co-siting with the thermal generator. The most attractive state for nuclear and thermal desalination (which is more attractive when using seawater) is Texas, although other areas may become attractive as water stress increases over the coming decades. Co-siting of all CSP and thermal desalination is challenging as attractive CSP sites are not coastal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.