“…For deeper consideration of nonlinear occurrence and realistic challenges, it is essential to discover closed-form soliton solutions of SFPDEs. According to the quick advancements in nonlinear sciences, a variety of simple and efficient approaches have been developed to obtain closed-form soliton solutions to NLPDEs, including the Hirota method [4,5], the Bernoulli sub-equation method [6,7], the F-expansion method [8], the (G ′ /G 2 )-expansion method [9], the simple equation method [10], the modified auxiliary equation method [11,12], the two variable (G ′ /G, 1/G)-expansion method [13][14][15][16], the Lie symmetric analysis [17], the polynomial complete discriminant system [18], the tanh-coth scheme [19], the Conservation laws method [20], the generalized exponential rational function approach [21,22], the binary bell polynomials method [23], the mapping method [24], the Shehu transform scheme [25], the sine-Gordon expansion [26], the Cole-Hopf transformation method [27,28], the Fan subequation technique [29], the unified method [30], the Khater method [31], the r + mEDAM method [32], the spectral Tau method [33], the G ′ G ′ +G+A -expansion procedure [34][35][36][37][38], the sub-equation method [39], the collocation method [40], the finite element method [41], and the generalized G ′ /G-expansion method …”