Dynamic Neural Network Architectural and Topological Adaptation and Related Methods -- A Survey
Lorenz Kummer
Abstract:Training and inference in deep neural networks (DNNs) has, due to a steady increase in architectural complexity and data set size, lead to the development of strategies for reducing time and space requirements of DNN training and inference, which is of particular importance in scenarios where training takes place in resource constrained computation environments or inference is part of a time critical application. In this survey, we aim to provide a general overview and categorization of state-of-the-art (SOTA)… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.