High-resolution solid-state NMR spectroscopy is a powerful tool for the study of organic and inorganic materials because it can directly probe the symmetry and structure at nuclear sites, the connectivity/bonding of atoms and precisely measure inter-atomic distances. However, NMR spectroscopy is hampered by intrinsically poor sensitivity, consequently, the application of NMR spectroscopy to many solid materials is often infeasible. High-field dynamic nuclear polarization (DNP) has emerged as a technique to routinely enhance the sensitivity of solid-state NMR experiments by one to three orders of magnitude. This perspective gives a general overview of how DNP enables advanced solid-state NMR experiments on a variety of materials. DNP-enhanced solid-state NMR experiments provide unique insights into the molecular structure, which makes it possible to form structure-activity relationships that ultimately assist in the rational design and improvement of materials.
Disciplines
Materials Chemistry | Physical Chemistry
CommentsThis document is the unedited Author's version of a Submitted Work that was subsequently accepted for publication in The Journal of Physical Chemistry Letters, copyright © American Chemical Society after peer review. To access the final edited and published work see doi: 10.1021/acs.jpclett.8b01891. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Abstract High-resolution solid-state NMR spectroscopy is a powerful tool for the study of organic and