The world’s human population is increasing as is the demand for new sustainable sources of energy. Accordingly, microalgae-based carbohydrates for biofuel production are being considered as an alternative source of raw materials for producing biofuels. Microalgae grow in photobioreactors under constantly changing conditions. Models improve our understanding of microalgae growth. In this paper, a photoacclimated model for continuous microalgae cultures in photobioreactors was used to study the time-varying behavior and sensitivity of solutions under optimal productivity conditions. From the perspective of dynamic simulation in this work, light intensity was found to play an influential role in modifying metabolic pathways as a cell stressor. Enhancing carbohydrate productivity by combining nutritional deficiency and light intensity regulation modeling strategies could be helpful to optimize the process for the highest yield in large-scale cultivation systems. Under the proposed simulation conditions, a maximum carbohydrate productivity of 48.11 gCm−3d−1 was achieved using an optimal dilution rate of 0.2625 d−1 and 350 μmolm−2s−1 of light intensity. However, it is important to note that, a particular set of manipulated inputs can generate multiple outputs at a steady state. A numerical solution of the sensitivity functions indicated that the model outputs were especially sensitive to changes in parameters corresponding to a minimum nitrogen quota, maximum nitrogen intake rate, dilution rate, and maximum nitrogen quota compared to to other model parameters.