Blood stasis syndromes (BSSs) are closely related to the occurrence and development of tumors, although the mechanism is still unclear. This study was aimed at exploring the effect and mechanism underlying different BSSs on tumor growth and metastasis. We established four BSS mouse models bred with breast cancer: qi deficiency and blood stasis (QDBS), cold coagulation blood stasis (CCBS), heat toxin and blood stasis (HTBS), and qi stagnation and blood stasis (QSBS). The results showed that microcirculation in the lower limb, abdominal wall, and tumor in situ decreased by varying degrees in the BSS groups. In addition, BSS promoted tumor growth and lung metastasis. The ratio of regulatory T cells in the tumor microenvironment was downregulated. Moreover, hypoxia-inducible factor 1-α, Wnt1, β-catenin, vascular endothelial growth factor, and Cyclin D1 levels increased in the tumors of BSS mice. In conclusion, BSS not only promoted the formation of a hypoxic and immunosuppressive microenvironment but also promoted the neovascularization.