The NP-complete Vertex Cover problem asks to cover all edges of a graph by a small (given) number of vertices. It is among the most prominent graph-algorithmic problems. Following a recent trend in studying temporal graphs (a sequence of graphs, so-called layers, over the same vertex set but, over time, changing edge sets), we initiate the study of Multistage Vertex Cover. Herein, given a temporal graph, the goal is to find for each layer of the temporal graph a small vertex cover and to guarantee that two vertex cover sets of every two consecutive layers differ not too much (specified by a given parameter). We show that, different from classic Vertex Cover and some other dynamic or temporal variants of it, Multistage Vertex Cover is computationally hard even in fairly restricted settings. On the positive side, however, we also spot several fixed-parameter tractability results based on some of themost natural parameterizations.