The use of lightweight strain-wave transmissions in collaborative industrial robots leads to structural compliance and a complex nonlinear behavior of the robot joints. Furthermore, wear and temperature changes lead to variations in the joint dynamics behavior over time. The immediate negative consequences are related to the performance of motion and force control, safety, and lead-through programming.This thesis introduces and investigates new methods to further increase the performance of collaborative industrial robots subject to complex nonlinear and time-varying joint dynamics behavior. Within this context, the techniques of mathematical modeling, system identification, and adaptive estimation and control are applied. The methods are experimentally validated using the collaborative industrial robots by Universal Robots.Mathematically, the robot and joint dynamics are considered as two coupled subsystems. The robot dynamics are derived and linearly parametrized to facilitate identification of the inertial parameters. Calibrating these parameters leads to improvements in torque prediction accuracy of 16.5 %-28.5 % depending on the motion.The joint dynamics are thoroughly analyzed and characterized. Based on a series of experiments, a comprehensive model of the robot joint is established taking into account the complex nonlinear dynamics of the strain-wave transmission, that is the nonlinear compliance, hysteresis, kinematic error, and friction. The steady-state friction is considered to depend on angular velocity, load torque, and temperature. The dynamic friction characteristics are described by an Extended Generalized Maxwell-Slip (E-GMS) model which describes in a combined framework; hysteresis characteristics
PrefaceThis dissertation is submitted to the Graduate School of Technical Sciences (GSTS) at Aarhus University (AU) in fulfillment of the requirements for the degree of Philosophiae Doctor (PhD). The dissertation is structured as a collection of papers in compliance with official rules and regulations of the GSTS. The dissertation comprises all research findings gathered as a collection of submitted articles in peer reviewed scientific journals and published in conference proceedings.