Abstract:Co-Injection Molding and multi-cavity molding are very common processes for plastic manufacturing. These two systems are sometimes combined and applied to some structure products. The core penetration and flow balance control problems are very difficult to manage. The inside mechanism of co-injection multi-cavity system is not fully figured out yet. In this study, we have focused on the penetration phenomena of core-material in a co-injection multicavity molding. The dynamic penetration behavior of core is ver… Show more
“…The main technical challenges are the selection of process parameters that allow simultaneous processing of two or more components. Equally important is equipping the injection machine with several injection units [185,186]. Multicomponent injection molding was addressed by Park et al The researchers attempted layered molding with a back core and co-injection.…”
Injection molding is a method commonly used to manufacture plastic products. This technology makes it possible to obtain products of specially designed shape and size. In addition, the developed mold allows for repeated and repeatable production of selected plastic parts. Over the years, this technology grew in importance, and nowadays, products produced by injection molding are used in almost every field of industry. This paper is a review and provides information on recent research reports in the field of modern injection molding techniques. Selected plastics most commonly processed by this technique are discussed. Next, the chosen types of this technique are presented, along with a discussion of the parameters that affect performance and process flow. Depending on the proposed method, the influence of various factors on the quality and yield of the obtained products was analyzed. Nowadays, the link between these two properties is extremely important. The work presented in the article refers to research aimed at modifying injection molding methods enabling high product quality with high productivity at the same time. An important role is also played by lowering production costs and reducing the negative impact on the environment. The review discusses modern injection molding technologies, the development of which is constantly progressing. Finally, the impact of the technology on the ecological environment is discussed and the perspectives of the process were presented.
“…The main technical challenges are the selection of process parameters that allow simultaneous processing of two or more components. Equally important is equipping the injection machine with several injection units [185,186]. Multicomponent injection molding was addressed by Park et al The researchers attempted layered molding with a back core and co-injection.…”
Injection molding is a method commonly used to manufacture plastic products. This technology makes it possible to obtain products of specially designed shape and size. In addition, the developed mold allows for repeated and repeatable production of selected plastic parts. Over the years, this technology grew in importance, and nowadays, products produced by injection molding are used in almost every field of industry. This paper is a review and provides information on recent research reports in the field of modern injection molding techniques. Selected plastics most commonly processed by this technique are discussed. Next, the chosen types of this technique are presented, along with a discussion of the parameters that affect performance and process flow. Depending on the proposed method, the influence of various factors on the quality and yield of the obtained products was analyzed. Nowadays, the link between these two properties is extremely important. The work presented in the article refers to research aimed at modifying injection molding methods enabling high product quality with high productivity at the same time. An important role is also played by lowering production costs and reducing the negative impact on the environment. The review discusses modern injection molding technologies, the development of which is constantly progressing. Finally, the impact of the technology on the ecological environment is discussed and the perspectives of the process were presented.
“…The filling imbalance has been examined extensively by scientists and engineers, e.g., [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25]. Up to now, there have been no universal and commonly accepted solutions of this problem.…”
Simulation studies were performed on filling imbalance in geometrically balanced injection molds. A special simulation procedure was applied to simulate properly the phenomenon, including inertia effects and 3D tetrahedron meshing as well as meshing of the nozzle. The phenomenon was investigated by simulation using several different runner systems at various thermo-rheological material parameters and process operating conditions. It has been observed that the Cross-WLF parameters, index flow, critical shear stress (relaxation time), and zero viscosity, as well as thermal diffusivity and heat transfer coefficient strongly affect the filling imbalance. The effect is substantially dependent on the runners’ layout geometry, as well as on the operating conditions, flow rate, and shear rate. The standard layout geometry and the corrected layout with circled element induce positive imbalance which means that inner cavities fills out faster, and it is opposite for the corrected layouts with one/two overturn elements which cause negative imbalance. Generally, for the standard layout geometry and the corrected layout with circled element, an effect of the zero shear rate viscosity η0 is positive (imbalance increases with an increase of viscosity), and an effect of the power law index n and the relaxation time λ is negative (imbalance decreases with an increase of index n and relaxation time λ). An effect of the thermal diffusivity α and heat transfer coefficient h is negative while an effect of the shear rate is positive. For the corrected layouts with one/two overturn elements, the results of simulations indicate opposite relationships. A novel optimization approach solving the filling imbalance problem and a novel concept of global modeling of injection molding process are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.