The world faces critical water risks in relation to water availability, yet water demand is increasing in most countries. To respond to these risks, some governments and water authorities are reforming their governance frameworks to achieve convergence between water supply and demand and ensure freshwater ecosystem services are sustained. To assist in this reform process, the Water Governance Reform Framework (WGRF) is proposed, which includes seven key strategic considerations: (1) well-defined and publicly available reform objectives; (2) transparency in decision-making and public access to available data; (3) water valuation of uses and non-uses to assess trade-offs and winners and losers; (4) compensation for the marginalized or mitigation for persons who are disadvantaged by reform; (5) reform oversight and "champions"; (6) capacity to deliver; and (7) resilient decision-making. Using these reform criteria, we assess current and possible water reforms in five countries: Murray-Darling Basin (Australia); Rufiji Basin (Tanzania); Colorado Basin (USA and Mexico); and Vietnam. We contend that the WGRF provides a valuable approach to both evaluate and to improve water governance reform and, if employed within a broader water policy cycle, will help deliver both improved water outcomes and more effective water reforms. will need to lower its projected 2050 total water demand by almost 40% (292 Billion Cubic Meters, BCM), the rest of South Asia by 43% (100 BCM), the Middle East by 42% (168 BCM) and North Africa by 17% (30 BCM), if water extractions are not to exceed the current total renewable water resources of these regions.Aeschbach-Hertig and Gleeson [6] argue that current food production in key farming regions of India, China and the USA cannot be maintained unless groundwater levels are stabilized. Another concern is that Wada et al. [7] estimate that, in 2000, non-renewable groundwater extraction contributed to 20% of global irrigation water extraction. This has important implications for food production because, globally, irrigation accounts for about 70% of global freshwater extractions and provides 40% of total human food calories. This tension between water for food production and other purposes is likely to be exacerbated into the future. For instance, by 2050: (1) the current water supply is projected to be less than the projected water applied for irrigation in major food-producing countries with production methods, and (2) a plateau is projected in terms of crop food production from water extractions if there are no further increases in the global irrigated agriculture area [8]. The key point is that in the absence of reform that includes: (1) better water governance and (2) how water is currently extracted and consumed, there are large, and with climate change, increasing risks to future food security [9].Government responses to the global water crises have, typically, been to adopt a "hard" infrastructure or engineering solutions to increase water supply that has sometimes been part of "water natio...