The aim of the paper is to model urban distribution vehicle routing problems by means of hubs in large cities. The idea behind the urban distribution center (DC) is to provide buffer points where cargo and packages which are to be delivered to shops and businesses can be stored beforehand. At these centers, there will be other kinds of routing problems corresponding to other fairly similar distribution problems. In this paper, a new vehicle routing model (based on the known Time-Dependent Vehicle Routing Problem with Time Windows, TDVRPTW) has been carried out and a change in the traditional approach is proposed, by adopting a system in which some customers are served by urban DCs while remaining customers are served by traditional routes. This study is also motivated by recent developments in real time traffic data acquisition systems, as well as national and international policies aimed at reducing concentrations of greenhouse gases emitted by traditional vans. By using k DCs, the whole problem is now composed of k+1 problems: one special VRPTW for each DC in addition to the main problem, in which some customers and k DC are serviced. The model has been tested by simulating one real case of pharmaceutical distribution within the city of Zaragoza.