2019
DOI: 10.32362/2500-316x-2019-7-3-77-88
|View full text |Cite
|
Sign up to set email alerts
|

Dynamic Programming as a Method of Spline Approximation in the CAD Systems of Linear Constructions

Abstract: В статье рассматриваются математические модели и алгоритмы решения задач, возникающих при автоматизации проектирования трасс линейных сооружений. Принципиальная особенность этих задач состоит в том, что план и продольный профиль трассы состоят из элементов заданного вида. В зависимости от вида сооружения в проектной практике используются отрезки прямых, дуги окружностей, парабол и клотоид. В любом случае необходимо получить гладкую кривую, состоящую из нужной последовательности элементов заданного вида. На сты… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
7
0

Year Published

2020
2020
2022
2022

Publication Types

Select...
5
1

Relationship

1
5

Authors

Journals

citations
Cited by 10 publications
(7 citation statements)
references
References 0 publications
0
7
0
Order By: Relevance
“…Smooth curves are one of the basic design tools applied in contemporary CAD. For example, the reference [4] describes the application of Spline Approximation in the CAD Systems for the Linear Constructions. The Bezier curves represent the classic type of smooth curves are of the greatest interest in this current research.…”
Section: Previous Workmentioning
confidence: 99%
See 3 more Smart Citations
“…Smooth curves are one of the basic design tools applied in contemporary CAD. For example, the reference [4] describes the application of Spline Approximation in the CAD Systems for the Linear Constructions. The Bezier curves represent the classic type of smooth curves are of the greatest interest in this current research.…”
Section: Previous Workmentioning
confidence: 99%
“…Bezier spline is the classical type of smooth curves represented parametrically. The construction of Bezier curve is carried out by means of Bernstein polynomials [4]:…”
Section: Bezier Curvementioning
confidence: 99%
See 2 more Smart Citations
“…In the simplest case of using a first-order spline, the task is to transform the original broken line (ground profile) into another broken line that satisfies a number of constraints: on the slopes of elements and the difference in slopes of adjacent elements, on the minimum length of the element, on ordinates of individual points and zones (height constraints) [6,7,8]. Due to the smallness of the design slopes, the length of the element and the difference between the abscissas of its ends practically coincide; the difference in the slopes of adjacent elements is identified with the angle of rotation, and the slope is identified with the angle of the element with the OX axis.…”
Section: Introductionmentioning
confidence: 99%