The dynamic stability problem of an anisotropic fiber-reinforced plate under increasing compressing load is considered in a geometrically nonlinear formulation using the Kirchhoff-Love’s shell theory. The problem is solved using the Bubnov-Galerkin method based on a polynomial approximation of the deflections in combination with a numerical method based on quadrature formulas. For a wide range of variations of physical, mechanical, and geometrical parameters, the dynamic behavior of the plate is studied.