Acetabular fractures are an especially problematic outcome of motor vehicle side impacts. While fracture type has been correlated with impact direction and femoral orientation, actual contact pressures in the hip joint have not been quantified for lateral loading conditions. In the present study, we used pressure sensitive film to measure contact areas and pressures in seven hip joints from four cadavers under quasi-static lateral loading through the greater trochanter. The aim was to quantify the interactions of the femoral head with the acetabulum associated with variations in femoral orientation. Three angles of hip flexion (80°, 90°, 100") and hip abduction (-loo, 0", 10') were tested, producing nine test orientations for each joint. We observed that contact areas, pressures, and forces varied significantly with femoral orientation for the adducted hip. The principal locations of load transmission were in the anterior and posterior regions of the acetabulum. For the abducted femur, contact pressures were concentrated anteriorly, and with increased adduction, anterior contact pressures diminished while posterior and superior pressures increased. The movement of pressure sites was consistent with mechanisms of acetabular fractures described by Letournel and Judet and provides new data for validation of finite element models of the pelvis in side impact.