1993
DOI: 10.1088/0305-4470/26/6/008
|View full text |Cite
|
Sign up to set email alerts
|

Dynamic scaling of disordered Ising systems

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

7
24
0
2

Year Published

1995
1995
2007
2007

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 39 publications
(33 citation statements)
references
References 25 publications
7
24
0
2
Order By: Relevance
“…Previous MC studies [18,19,20,21,22,23] of equilibrium and off-equilibrium dynamics apparently have not confirmed the FT general predictions. They have mainly focused on the dynamic critical exponent z, which characterizes the divergence of the autocorrelation times when approaching the critical point.…”
Section: Introductionmentioning
confidence: 85%
“…Previous MC studies [18,19,20,21,22,23] of equilibrium and off-equilibrium dynamics apparently have not confirmed the FT general predictions. They have mainly focused on the dynamic critical exponent z, which characterizes the divergence of the autocorrelation times when approaching the critical point.…”
Section: Introductionmentioning
confidence: 85%
“…It is clear that a more precise experiment on this issue will be welcome. We should point out that the critical dynamics of a diluted antiferromagnet is the same as of a diluted ferromagnet.A numerical study of the on-equilibrium dynamics in diluted systems was performed in 1993 by Heuer [9]. He measured the equilibrium autocorrelation functions for different concentrations and lattice sizes.…”
mentioning
confidence: 99%
“…A numerical study of the on-equilibrium dynamics in diluted systems was performed in 1993 by Heuer [9]. He measured the equilibrium autocorrelation functions for different concentrations and lattice sizes.…”
mentioning
confidence: 99%
See 1 more Smart Citation
“…Проведем теперь сопоставление рассчитанных в данной работе значений динами-ческого критического индекса для неупорядоченных систем с результатами компью-терного моделирования критической динамики неупорядоченной трехмерной мо- [32]. Данные результаты моделирования критической динамики находятся в достаточно хорошем согласии с результатами теоретико-полевого расчета с использованием методов суммирования лишь для сла-бо неупорядоченных систем с p 0.8, в то время как для сильно неупорядоченных систем наблюдается заметное расхождение результатов.…”
Section: заключениеunclassified