In this paper, the global Mittag–Leffler stabilization of fractional-order BAM neural networks is investigated. First, a new lemma is proposed by using basic inequality to broaden the selection of Lyapunov function. Second, linear state feedback control strategies are designed to induce the stability of fractional-order BAM neural networks. Third, based on constructed Lyapunov function, generalized Gronwall-like inequality, and control strategies, several sufficient conditions for the global Mittag–Leffler stabilization of fractional-order BAM neural networks are established. Finally, a numerical simulation is given to demonstrate the effectiveness of our theoretical results.