1971
DOI: 10.1063/1.1693539
|View full text |Cite
|
Sign up to set email alerts
|

Dynamic Stabilization of the Screw Pinch

Abstract: A method is presented for dynamically stabilizing the m = 1 mode in a screw pinch

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
4
0

Year Published

1972
1972
1973
1973

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(4 citation statements)
references
References 1 publication
0
4
0
Order By: Relevance
“…We denote the roots of Eq. P(bl)=O (bll __<bl2__< b13 ) through bl (i= 1,2,3). Since sn (u; k) is a periodic function of the variavle u with a period of 4K(k) (K(k) is a total elliptic integral of the first kind), from relation (2.18) follows a conclusion about a periodic nature of the energy transformation process.…”
Section: Initial Equation Nonlinear Interaction Of Two Modesmentioning
confidence: 84%
See 1 more Smart Citation
“…We denote the roots of Eq. P(bl)=O (bll __<bl2__< b13 ) through bl (i= 1,2,3). Since sn (u; k) is a periodic function of the variavle u with a period of 4K(k) (K(k) is a total elliptic integral of the first kind), from relation (2.18) follows a conclusion about a periodic nature of the energy transformation process.…”
Section: Initial Equation Nonlinear Interaction Of Two Modesmentioning
confidence: 84%
“…[1][2][3][4][5][6] and vast References listed therein). This interest can be explained by the fact that such methods favour an efficient stabilization of the most dangerous from a standpoint of the plasma long confinement, "sausage-type" and "kink-type" hydrodynamic instabilities (unstable oscillations with m = (0,1), respectively).…”
Section: Introductionmentioning
confidence: 99%
“…In the longitudinal scheme the oscillatory component in the magnetic field is by definition parallel to the main field and in the transverse scheme it is orthogonal to the main field. However, the usefulness of this distinction is somewhat doubtful because it appears that in many cases [35][36][37][38] a combination of the two schemes is preferable and necessary. We shall then turn to the discussion of more specific problems.…”
Section: Dynamic Stabilization Of Plasmasmentioning
confidence: 99%
“…In recent theoretical work by Berge [37], the possibility of producing a dynamic equilibrium in a toroidal geometry by oscillating currents in S. = 1 windings was studied. These currents produce forces which in the main make the plasma column move in a helical shape with constant cross-section.…”
Section: Bergementioning
confidence: 99%