2019
DOI: 10.48550/arxiv.1901.02419
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Dynamic tail inference with log-Laplace volatility

Gordon V. Chavez

Abstract: We propose a family of models that enable predictive estimation of time-varying extreme event probabilities in heavy-tailed and nonlinearly dependent time series. The models are a white noise process with conditionally log-Laplace stochastic volatility. In contrast to other, similar stochastic volatility formalisms, this process has analytic expressions for its conditional probabilistic structure that enable straightforward estimation of dynamically changing extreme event probabilities. The process and volatil… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 26 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?