Thermoelastic response of liquid metal targets exposed to high-volumetric-energy deposition in times shorter than the target hydrodynamic response time (i.e., sound travel time) is of interest to several research areas, including targets for high-power accelerators such as the Spallation Neutron Source, muon collider targets, etc. Sudden energy deposition causes shock and rarefaction waves of magnitude ± ∆P that corresponds to an initial thermal pressure of tens of katm. Nevertheless a liquid subjected to a negative pressure is metastable. The problem of liquid target oscillations in the presence of large negative pressure, and the mechanism of fragmentation and its consequences, are considered in this paper.