In this paper, a dynamic combustor model for inclusion into a one-dimensional full gas turbine engine simulation model, with high numerical accuracy is developed. Effects of dominant parameters, such as frequency and amplitude of the inlet air and fuel mass flow rate fluctuations, on outlet temperature of the combustion chamber, are investigated. The main goal of this research is to analyze the response of the gas turbine combustor to dynamic events that occur in the compressor. In the present work, for modeling combustion, the equations of chemical equilibrium (a second-law concept) are developed and applied to combustion-product mixtures. Thus the heat released from combustion is computed and used as a source term in the energy equation. Ignition effects either would be considered with a time lag equation as a source term in the energy equation. The combustor flammability limits are determined by using available experimental data for various gases and also Le Chatelier’s law. Source terms of governing equations are added using the operator splitting method. To operate this, the modified version of the PPM algorithm called PPMLR is used which solves the Euler equations in Lagrangian coordinates. At the end of each time step, results calculated in the Lagrangian coordinates would remap to the original Eulerian coordinate. The results revealed that to achieve a grid-independent solution, the accuracy of 0.002 m over the length of the combustion chamber should be applied. By reducing the accuracy of simulation, numerical diffusion causes a rise in flow temperature along with the combustion chamber. Through the dynamic modeling aspect, it is found that by increasing inlet fuel flow rate frequency up to 25 Hz, the amplitude of the fluctuations of outlet temperature, increases. Further increase in frequency up to 100 Hz, the amplitude of the fluctuations remains unchanged. However further increases in frequency from 100 Hz, causes amplitudes of outlet temperature fluctuations to decrease.