Dynamic, Viscoelasticity-Driven Shape Change of Elastomer Bilayers
Wenya Shu,
C. Nadir Kaplan,
Justin R. Barone
Abstract:Thin bilayers made of elastic sheets with different strain recoveries can be used for dynamic shape morphing through ambient stimuli such as temperature, mass diffusion, and light. As a fundamentally different approach to designing temporal shape change, constituent polymer molecular features (rather than external fields) are leveraged, specifically the viscoelasticity of gelatin bilayers, to achieve dynamic three-dimensional (3D) curls and helical twists with curvatures as high as 1.25 cm −1 when the strain d… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.