One of the important aspects for degradation of the life quality is the ever increasing volume and range of industrial wastes. Polymer wastes, such as automotive tire rubber, are a source of long-term environmental pollution. This paper presents an approach to simplifying the rubber waste recycling process using cryogenic temperatures. The temperature of cryogenic treatment is ranged from 77 K to 280 K. Liquid nitrogen was used as a cryoagent for laboratory tests. Experimental and numerical studies have been carried out to determine the optimal conditions for the recycling process. Numerical studies were performed using the COMSOL Multiphysics cross-platform software. The optimal force of mechanical shock for the destruction of a tire which turned into a glassy state after cryoexposure was determined experimentally. The chemical and physical properties of the final product (crumb rubber) have been studied by scanning electron microscopy and energy dispersive X-ray spectroscopy. The analysis shows that the morphology and elemental composition of the samples remain practically unchanged, demonstrating environmental friendliness of the proposed process.