2018
DOI: 10.1088/1361-6382/aaad80
|View full text |Cite
|
Sign up to set email alerts
|

Dynamical analysis on $f(R, \mathcal{G})$ cosmology

Abstract: We use a dynamical system approach to study the cosmological viability of f (R, G) gravity theories. The method consists of formulating the evolution equations as an autonomous system of ODEs, using suitable variables. The formalism is applied to a class of models in which f (R, G) ∝ R n G 1−n and its solutions and corresponding stability are analysed in detail. New accelerating solutions that can be attractors in the phase space are found. We also find that this class of models does not exhibit a matter-domin… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

1
16
0

Year Published

2019
2019
2024
2024

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 56 publications
(17 citation statements)
references
References 54 publications
1
16
0
Order By: Relevance
“…In general, f (R, G) gravity is taken into account to recover GR, in a given limit, assuming f (R, G) = R + f (G). Observational and theoretical constraints have been obtained also for other forms of f (R, G) [38,39] but pure f (G) theories are not, in general, considered because GR seems excluded.…”
Section: Introductionmentioning
confidence: 99%
“…In general, f (R, G) gravity is taken into account to recover GR, in a given limit, assuming f (R, G) = R + f (G). Observational and theoretical constraints have been obtained also for other forms of f (R, G) [38,39] but pure f (G) theories are not, in general, considered because GR seems excluded.…”
Section: Introductionmentioning
confidence: 99%
“…Modified gravity with Gauss-Bonnet scalar in the form R+f (G) was first introduced in the context of FRW metric, as alternative to dark energy for the late acceleration of the universe [7]. Several other investigations followed [8,9,10,11,12] because the Gauss-Bonnet term results useful to regularize the gravitational theory for quantum fields in curved spaces [2] and improves the efficiency of inflation giving rise to multiple accelerated expansions [13] because G behaves as a further scalaron besides R [14].…”
Section: Introductionmentioning
confidence: 99%
“…Case 2: f (R, T 2 ) = αR n + β(T 2 ) m Following (A1) and (A2), for this model one has that x = x 3 , y = x 4 and z = x 5 . By transforming the dynamical system (50)- (52) into Poincaré variables, one gets that at the limit ρ → 1 (infinity), the dynamical system for the leading terms becomes ρ → (2m − 1) sin 3 θ cos θ sin ψ(n cos(2ψ) − n + 2) 4m(n − 1) ,…”
Section: Discussionmentioning
confidence: 99%
“…Moreover, it may lead to interesting cosmological results in higher dimensional theories like brane-world models. A more general class of modified gravity theory was developed in the form of f (R, G) [51,52] which includes both the f (R) and f (G) gravity theories. For the f (R, G) cosmological model the phase space structure has been investigated for a specific model which contains the power-law product form [52].…”
mentioning
confidence: 99%
See 1 more Smart Citation