The Jordan-Wigner transformation is known as a powerful tool in condensed matter theory, especially in the theory of low-dimensional quantum spin systems. The aim of this chapter is to review the application of the Jordan-Wigner fermionization technique for calculating dynamic quantities of low-dimensional quantum spin models. After a brief introduction of the Jordan-Wigner transformation for one-dimensional spin one-half systems and some of its extensions for higher dimensions and higher spin values we focus on the dynamic properties of several lowdimensional quantum spin models. We start from the famous s = 1/2 XX chain. As a first step we recall well-known results for dynamics of the z-spin-component fluctuation operator and then turn to the dynamics of the dimer and trimer fluctuation operators. The dynamics of the trimer fluctuations involves both the two-fermion (one particle and one hole) and the four-fermion (two particles and two holes) excitations. We discuss some properties of the two-fermion and four-fermion excitation continua. The four-fermion dynamic quantities are of intermediate complexity between simple two-fermion (like the zz dynamic structure factor) and enormously complex multi-fermion (like the xx or xy dynamic structure factors) dynamic quantities. Further we discuss the effects of dimerization, anisotropy of XY interaction, and additional Dzyaloshinskii-Moriya interaction on various dynamic quantities. Finally we consider the dynamic transverse spin structure factor Szz(k, ω) for the s = 1/2 XX model on a spatially anisotropic square lattice which allows one to trace a one-to-two-dimensional crossover in dynamic quantities.