In this article, we analyze a second-order stochastic SEIR epidemic model with latent infectious and susceptible populations isolated at home. Firstly, by putting forward a novel inequality, we provide a criterion for the presence of an ergodic stationary distribution of the model. Secondly, we establish sufficient conditions for extinction. Thirdly, by solving the corresponding Fokker–Plank equation, we derive the probability density function around the quasi-endemic equilibrium of the stochastic model. Finally, by using the epidemic data of the corresponding deterministic model, two numerical tests are presented to illustrate the validity of the theoretical results. Our conclusions demonstrate that nations should persevere in their quarantine policies to curb viral transmission when the COVID-19 pandemic proceeds to spread internationally.