A modern re-visitation of the consequences of the lack of an intrinsic notion of instantaneous 3-space in relativistic theories leads to a reformulation of their kinematical basis emphasizing the role of non-inertial frames centered on an arbitrary accelerated observer. In special relativity the exigence of predictability implies the adoption of the 3+1 point of view, which leads to a well posed initial value problem for field equations in a framework where the change of the convention of synchronization of distant clocks is realized by means of a gauge transformation. This point of view is also at the heart of the canonical approach to metric and tetrad gravity in globally hyperbolic asymptotically flat space-times, where the use of Shanmugadhasan canonical transformations allows the separation of the physical degrees of freedom of the gravitational field (the tidal effects) from the arbitrary gauge variables. Since a global vision of the equivalence principle implies that only global non-inertial frames can exist in general relativity, the gauge variables are naturally interpreted as generalized relativistic inertial effects, which have to be fixed to get a deterministic evolution in a given non-inertial frame. As a consequence, in each Einstein's space-time in this class the whole chrono-geometrical structure, including also the clock synchronization convention, is dynamically determined and a new approach to the Hole Argument leads to the conclusion that "gravitational field" and "space-time" are two faces of the same entity. This view allows to get a classical scenario for the unification of the four interactions in a scheme suited to the description of the solar system or our galaxy with a deperametrization to special relativity and the subsequent possibility to take the non-relativistic limit.