Diffraction is one of the universal phenomena of physics, and a way to overcome it has always represented a challenge for physicists. In order to control diffraction, the study of structured waves has become decisive. Here, we present a specific class of nondiffracting spatially accelerating solutions of the Maxwell equations: the Weber waves. These nonparaxial waves propagate along parabolic trajectories while approximately preserving their shape. They are expressed in an analytic closed form and naturally separate in forward and backward propagation. We show that the Weber waves are self-healing, can form periodic breather waves and have a well-defined conserved quantity: the parabolic momentum. We find that our Weber waves for moderate to large values of the parabolic momenta can be described by a modulated Airy function. Because the Weber waves are exact time-harmonic solutions of the wave equation, they have implications for many linear wave systems in nature, ranging from acoustic, electromagnetic and elastic waves to surface waves in fluids and membranes. Gesellschaft and applications, e.g. particle and cell micromanipulation [4,5], plasma physics [6], nonlinear optics [7], plasmonics [8,9] and micromachining [10], among others.Recently, new nondiffractive accelerating waves called 'half a Bessel' waves were theoretically introduced [11] and experimentally verified [12]. These waves propagate along a circular trajectory; during a quarter of the circle they are quasi shape-preserving and after this, diffraction broadening takes over and the waves spread out. The importance of these waves consists in having the same characteristics as the paraxial accelerating beams [1-3] but in the nonparaxial regime, i.e. these waves can bend to broader angles. Therefore, the 'half a Bessel' waves allow one to extrapolate all the intriguing applications of accelerating beams to the nonparaxial regime, and because these waves are solutions to the wave equation, they have implications for many linear wave systems in nature, ranging from acoustic and elastic waves to surface waves in fluids and membranes. Therefore, a natural question is: are there other accelerating nondiffractive solutions to the wave equation?In this paper, we present new nonparaxial spatially accelerating shape-preserving waves: the Weber waves. These nonparaxial waves propagate along parabolic trajectories while approximately preserving their shape within a range of propagation distances. Our Weber waves, like the 'half a Bessel' waves, are self-healing, they can form breather waves, and they are a complete and orthogonal family of waves. The Weber waves naturally separate in forward and backward propagation, and they have an analytic closed-form solution.The 'half a Bessel' waves by construction break the circular symmetry and do not have a well-defined angular momentum. In contrast, we show that the Weber waves have a well-defined conserved quantity: the parabolic momentum. We found that our Weber waves for moderate to large values of the parabolic mom...