2015
DOI: 10.1090/jams831
|View full text |Cite
|
Sign up to set email alerts
|

Dynamical degrees of birational transformations of projective surfaces

Abstract: ABSTRACT. The dynamical degree λ( f ) of a birational transformation f measures the exponential growth rate of the degree of the formulae that define the n-th iterate of f . We study the set of all dynamical degrees of all birational transformations of projective surfaces, and the relationship between the value of λ( f ) and the structure of the conjugacy class of f . For instance, the set of all dynamical degrees of birational transformations of the complex projective plane is a closed and well ordered set of… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

2
96
0
4

Year Published

2015
2015
2023
2023

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 79 publications
(102 citation statements)
references
References 28 publications
2
96
0
4
Order By: Relevance
“…Cependant, même si nous pouvions enlever cette hypothèse et obtenir ainsi une démonstration alternative de la non simplicité de Bir(P 2 ) sur tout corps, une telle preuve reste peu élémentaire car elle repose lourdement sur les articles [7] et [3].…”
Section: Annales De L'institut Fourierunclassified
See 1 more Smart Citation
“…Cependant, même si nous pouvions enlever cette hypothèse et obtenir ainsi une démonstration alternative de la non simplicité de Bir(P 2 ) sur tout corps, une telle preuve reste peu élémentaire car elle repose lourdement sur les articles [7] et [3].…”
Section: Annales De L'institut Fourierunclassified
“…Ainsi cet élément particulier joue le même rôle que l'élément général a ci-dessus. La preuve présentée dans cet article ne repose pas sur [3,7] à l'exception du lemme 2.8 à la section 2.3 qui est une adaptation directe de [7,Proposition 5.7].…”
Section: Annales De L'institut Fourierunclassified
“…We point out that the automorphisms in Theorem 3.5 are mostly implicit, i.e. there are existence results building on elliptic fibrations (in particular of maximal rank) and some group theory (see [2,4]). In contrast, until the completion of the first version of this paper it was only for p D 3 that there was an explicit g 2 Aut.X.p// of Salem degree 22 known [3], building on the calculation of Aut.X.3// by Kondō and Shimada [8].…”
Section: Remark 34mentioning
confidence: 99%
“…One of the keys for the implicit results in [2,4] is the special feature that a K3 surface may admit different elliptic fibrations. For convenience, we shall only work with 714 M. Schütt CMH fibrations which are already visible on X .…”
Section: Alternative Elliptic Fibrationmentioning
confidence: 99%
See 1 more Smart Citation