Abstract. In this note we prove the existence of a localization/delocalization transition for Landau Hamiltonians randomly perturbed by an electric potential with unbounded amplitude. In particular, with probability one, no Landau gaps survive as the random potential is turned on; the gaps close, filling up partly with localized states. A minimal rate of transport is exhibited in the region of delocalization. To do so, we exploit the a priori quantization of the Hall conductance and extend recent Wegner estimates to the case of unbounded random variables.