2021
DOI: 10.48550/arxiv.2111.14540
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Dynamical low-rank approximations of solutions to the Hamilton-Jacobi-Bellman equation

Abstract: We present a novel method to approximate optimal feedback laws for nonlinear optimal control based on low-rank tensor train (TT) decompositions. The approach is based on the Dirac-Frenkel variational principle with the modification that the optimisation uses an empirical risk. Compared to current state-of-the-art TT methods, our approach exhibits a greatly reduced computational burden while achieving comparable results. A rigorous description of the numerical scheme and demonstrations of its performance are pr… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 20 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?