Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
В настоящей работе мы рассматриваем класс $G$ сохраняющих ориентацию диффеоморфизмов Морса-Смейла $f$, заданных на замкнутом 3-многообразии $M^3$, неблуждающее множество которых состоит из четырех неподвижных точек с попарно различными индексами Морса. Из результатов работ С. Смейла и К. Мейера следует, что все градиентно-подобные потоки с аналогичными свойствами имеют энергетическую функцию Морса с четырьмя критическими точками попарно различных индексов Морса. Это означает, что несущее многообразие $M^3$ для этих потоков допускает разложение Хегора рода 1, и, следовательно, оно гомеоморфно линзовому пространству $L_{p,q}$. Несмотря на простую структуру неблуждающего множества диффеоморфизмов в классе $G$, существуют диффеоморфизмы с дико вложенными сепаратрисами. Согласно результатам В. З. Гринеса, Ф. Лауденбаха, О. В. Починки такие диффеоморфизмы не обладают энергетической функцией, и вопрос о топологии их несущего многообразия остается открытым. Согласно результатам В. З. Гринеса, Е. В. Жужомы и В. С. Медведева $M^3$ гомеоморфно линзовому пространству $L_{p,q}$ в случае локально плоского вложения замыканий одномерных сепаратрис диффеоморфизма $f\in G$. Более того, блуждающее множество диффеоморфизма $f$ содержит по меньшей мере $p$ некомпактных гетероклинических кривых. В настоящей работе аналогичный результат получен для произвольных диффеоморфизмов класса $G$. На каждом линзовом пространстве $L_{p,q}$ построены диффеоморфизмы из класса $G$ с диким вложением одномерных сепаратрис. Такие примеры ранее были известны только на 3-сфере. Также установлено, что топологическая сопряженность диффеоморфизмов класса $G$ с единственной некомпактной гетероклинической кривой полностью определяется эквивалентностью узлов Хопфа, являющихся проекциями одномерных седловых сепаратрис в пространство орбит бассейна стока. Более того, любой узел Хопфа $L$ реализуется таким диффеоморфизмом. В этом смысле полученный результат подобен классификации диффеоморфизмов Д. Пикстона, полученной Х. Бонатти и В. З. Гринесом. Библиография: 65 названий.
В настоящей работе мы рассматриваем класс $G$ сохраняющих ориентацию диффеоморфизмов Морса-Смейла $f$, заданных на замкнутом 3-многообразии $M^3$, неблуждающее множество которых состоит из четырех неподвижных точек с попарно различными индексами Морса. Из результатов работ С. Смейла и К. Мейера следует, что все градиентно-подобные потоки с аналогичными свойствами имеют энергетическую функцию Морса с четырьмя критическими точками попарно различных индексов Морса. Это означает, что несущее многообразие $M^3$ для этих потоков допускает разложение Хегора рода 1, и, следовательно, оно гомеоморфно линзовому пространству $L_{p,q}$. Несмотря на простую структуру неблуждающего множества диффеоморфизмов в классе $G$, существуют диффеоморфизмы с дико вложенными сепаратрисами. Согласно результатам В. З. Гринеса, Ф. Лауденбаха, О. В. Починки такие диффеоморфизмы не обладают энергетической функцией, и вопрос о топологии их несущего многообразия остается открытым. Согласно результатам В. З. Гринеса, Е. В. Жужомы и В. С. Медведева $M^3$ гомеоморфно линзовому пространству $L_{p,q}$ в случае локально плоского вложения замыканий одномерных сепаратрис диффеоморфизма $f\in G$. Более того, блуждающее множество диффеоморфизма $f$ содержит по меньшей мере $p$ некомпактных гетероклинических кривых. В настоящей работе аналогичный результат получен для произвольных диффеоморфизмов класса $G$. На каждом линзовом пространстве $L_{p,q}$ построены диффеоморфизмы из класса $G$ с диким вложением одномерных сепаратрис. Такие примеры ранее были известны только на 3-сфере. Также установлено, что топологическая сопряженность диффеоморфизмов класса $G$ с единственной некомпактной гетероклинической кривой полностью определяется эквивалентностью узлов Хопфа, являющихся проекциями одномерных седловых сепаратрис в пространство орбит бассейна стока. Более того, любой узел Хопфа $L$ реализуется таким диффеоморфизмом. В этом смысле полученный результат подобен классификации диффеоморфизмов Д. Пикстона, полученной Х. Бонатти и В. З. Гринесом. Библиография: 65 названий.
We consider the class $G$ of orientation-preserving Morse-Smale diffeomorphisms $f$ defined on a closed 3-manifold $M^3$, whose non-wandering set consists of four fixed points with pairwise different Morse indices. It follows from results due to Smale and Meyer that all gradient-like flows with similar properties have a Morse energy function with four critical points of pairwise distinct Morse indices. This means that the supporting manifold $M^3$ of such a flow admits a Heegaard decomposition of genus 1, so that it is diffeomorphic to a lens space $L_{p,q}$. Despite the simple structure of the non-wandering set of diffeomorphisms in the class $G$, there are diffeomorphisms with wildly embedded separatrices. According to results due to Grines, Laudenbach, and Pochinka, such diffeomorphisms have no energy function and the question of the topology of the supporting manifold is still open. According to results due to Grines, Zhuzhoma, and V. Medvedev, $M^3$ is homeomorphic to a lens space $L_{p,q}$ in the case of a tame embedding of the one-dimensional separatrices of the diffeomorphism $f\in G$. Moreover, the wandering set of $f$ contains at least $p$ non-compact heteroclinic curves. We obtain a similar result for arbitrary diffeomorphisms in the class $G$. On each lens space $L_{p,q}$ we construct diffeomorphisms from $G$ with wild embeddings of one-dimensional separatrices. Such examples were previously known only on the 3-sphere. We also show that the topological conjugacy of two diffeomorphisms in $G$ with a unique non-compact heteroclinic curve is fully determined by the equivalence of the Hopf knots that are the projections of one-dimensional saddle separatrices onto the orbit space of the sink basin. Moreover, each Hopf knot $L$ can be realized by such a diffeomorphism. In this sense the result obtained is similar to the classification of Pixton diffeomorphisms obtained by Bonatti and Grines. Bibliography: 65 titles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.