Recent developments in theoretical aspects of spin noise and relaxation and their interrelationship reveal a modified spin density, distinct from the density matrix, as the necessary object to describe fluctuations in spin systems. These fluctuations are to be viewed as an intrinsic quantum mechanical property of such systems immersed in random magnetic environments and are observed as "spin noise" in the absence of any radio frequency excitation. With the prospect of ultrafast digitization, the role of spin noise in real-time parameter extraction for (NMR) spin systems, and the advantage over standard techniques, is of essential importance, especially for systems containing a small number of spins. In this article we outline prospects for harnessing the recent dynamical theory in terms of spin-noise measurement, with attention to real-time properties.