2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2020
DOI: 10.1109/iros45743.2020.9341283
|View full text |Cite
|
Sign up to set email alerts
|

Dynamically Constrained Motion Planning Networks for Non-Holonomic Robots

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
13
0
2

Year Published

2021
2021
2024
2024

Publication Types

Select...
6
3

Relationship

0
9

Authors

Journals

citations
Cited by 29 publications
(15 citation statements)
references
References 23 publications
0
13
0
2
Order By: Relevance
“…Kendala non-holonomik diatur oleh persamaan dinamis yang bergantung pada turunan waktu dari ruang konfigurasi sistem [12,22,23]. Kendala tersebut muncul di banyak aplikasi, mulai dari navigasi mobile robot hingga needle steering dalam operasi robot [24].…”
Section: Pendahuluanunclassified
See 1 more Smart Citation
“…Kendala non-holonomik diatur oleh persamaan dinamis yang bergantung pada turunan waktu dari ruang konfigurasi sistem [12,22,23]. Kendala tersebut muncul di banyak aplikasi, mulai dari navigasi mobile robot hingga needle steering dalam operasi robot [24].…”
Section: Pendahuluanunclassified
“…Perhitungan kendala (konstrain) TT diselesaikan dengan metode Jellet Invarian (JI). Kendala adalah kondisi yang membatasi pergerakan sistem mekanis yang mengurangi baik derajat kebebasan maupun jangkauan setiap derajat kebebasan [23]. Skema dinamika TT dapat dilihat pada Gambar 1 di bawah ini, Gambar 2 menunjukkan dinamika TT dengan sudut elevasi (𝜃) bervariasi dari 0.1 rad samapai 0.9 rad saat pertama kali dimainkan (𝑡 = 0).…”
Section: Hasil Dan Pembahasanunclassified
“…Qureshi et al formulate constraints into MPNet, and present CoMPNet, which encompasses kinematic constraints [33]. A similar work is done in [34]. Bency et al present OracleNet, a recurrent neural network (RNN)-based approach to generate fast near-optimal paths for robotic arms [35].…”
Section: Related Workmentioning
confidence: 99%
“…Other recent work has been devoted to machine learning and variatial approaches to the problem; for example, [20], [21], [22]. Such approaches often rely on a hierarchical algorithms with global trajectory generation and local collision avoidance as in [23], [24].…”
Section: Introductionmentioning
confidence: 99%